{

AD-£205 335

R
2]
December 1988 .-t | UILG-ENG-88-2262 7S

ACT-104

COORDINATED SCIENCE LABORATORY
College of Engineering

Applied Computation Theory

RECURSIVE
GATE-ARRAYS

C. Chiang
S. Maddila
M. Sarrafzadeh

DTIC

RELECTE

E

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

B

C) V)

£
.

8

UNCLASSIFIED
{ \ 1ON 1 PA

REPORT DOCUMENTATION PAGE

Foﬁ!;w
OM8 No. 0704-0188

1a. REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

28. SECURITY CLASSIFICATION AUTHORITY

—lO0G,
3. DISTRIBUTION/ AVAILABILITY QF REPORT
Approved for public release;

2b. DECLASSIFICATION/ DOWNGRADING SCHEDULE

distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING QRGANIZATION REPORT NUMBER(S)

UILU-ENG-88-2262 (ACT#104)
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIlAﬁON
Coordinated Science Lab (if applicable) Office of Naval Research
University of Illinois N/A Natg 1 Sci Foyndarign

6c. ADORESS (City, State, and ZIP Code)

1101 W. Springfield Ave.
Urbana, IL 61801

7b. ADORESS (City, State, and ZIP Code)

Arlington, VA 22217

1800 G. Street
Washington, DC 20552

8b. OFFICE SYMBQL

8a. NAME OF FUNDING / SPONSORING
0f applicable)

ORGANIZATION Joint Services
Electronics Program /NSF

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
NOGQ14--84-C-0149
MIP-8709074

8c ADDRESS (City, State, and 2IP Code)

Arlington, VA 22217
1800 G. Street, Washington, DC 20552

10. SOQURCE OF FUNDING NUMBERS

WORK UNIT

TASK
IACCESSION NO.

PROGRAM PROJECT
NO. NO.

ELEMENT NO.

P —
11. TITLE (Include Securty Clasufication)

Recursive Gate~Arrays

T I .
12. PERSONAL AUTHOR(S)

Chiang, C.; Maddila, S.; Sarrafzadeh. M.

13a. TYPE OF REPORT 13b. TIME COVERED

Technical FROM TO

I

T~ —
14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
December 1988 9

16. SUPPLEMENTARY NOTATION

17. COSATI COOES

FIELD GROUP SUS-GROUP gate-array,

18. SUBIECT TERMS (Continue on reverse if necessary and identify by biock number)

VLSI layout placement, knock-knee model .

We propose a regular architecture, called

placement can be obtained in O(n log n) time.

19. ARSTRACT (Continue an reverse if necessary and identify by biock number)

recursive gate-arrays, suitable for circuits with

modules of nonuniform size. A set-of n (rectangular and L-shaped) modules can be placed in a
recursive gate-array.occupying (A, area, where A, ;,

is the sum of area of the modules. The

3

20. OISTRIBUTION/ AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIEDAUNLIMITED [J SAME AS RPT. [T] OTIC USERS Unclassified
lzz.. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (inciude Area Code) | 22¢. OFFICE 5YMBOL
N,
OO0 Form 1473, JUN 86 Previous editions are obsolete. RITY IFICATION OF THIS PA
UNCLASSIFIED

Recursive Gate-Arrays!

C. Chiang?, S. Maddila3, M. Sarrafzadeh?| p,;. -

Abstract

P

[Aen wl

NTis o o I ¥ e

al

)

Unansa «ong ’
FERLE 2 D
Justifz’_’.‘)tior‘gﬁ .

— .

By—___
|_Distributiony |
Availabilit? Cedes

Avail and/or
Dist Speclal

———

A

We propose a regular architecture, called recursive gate-arrays, suitable for circuits

with modules of non-uniform size. A set of n (rectangular and L-shaped) modules can

be placed in a recursive gate-array occupying ©(Amin) area, where Apin is the sum of

area of the modules. The placement can be obtained in O(nlogn) time.

1This work was supported in part by the National Science Foundation under Grant MIP-8709074 and

ECS-8410902.

2Department of Electrical Engineering and Computer Science, The Technological Institute, Northwestern

University, Evanston, IL 60208.

ACoordinated Science Laboratory and Department of Electrical and Computer Engineering, University

of Illinois, Urbana, IL 61801.

Design automation is motivated by the complexity of present day computing systems in
the VLSI environment. The use of a regular structure facilitates the design process. In
gate-array architecture a square region of the plane is partitioned into equal-sized square

subregions and each module (functional cell) is placed in a distinct region.

Consider a circuit g which is a set of modules {M;,..., M, }, where n is assumed to be
a perfect square. Let o; denote the area of module M;. A gate-array layout of u requires
Q(namax) area, where amax = max; ¢; is the area of the largest module of x. Thus, gate-arrays
are suitable for circuits with “equal-sized” modules [CFKNS]. For circuits with non-uniform
size modules the gate-array layout may result in excessive wastage of the layout area. In this
paper, we propose a recursive-gate-array structure which requires ©(Amn) area to lay out

an arbitrary circuit p, consisting of rectangular and L-shaped modules, where Ay, = ¥, a;.

In a recursive-gate-array (RGA) architecture, a square region of the plane is partitioned

into equal-sized square subregions. Each square subregion either contains a module or is

itself an RGA (see Figure 1).

Layout of a graph G = (V, E), in the unit-square-grid U = (P, L) (see [LP] for a formal
definition of grids suitable for routing) is an embedding of G into U. Namely, each vertex
v € V is mapped to a grid-point p € P and each edge e € E is realized by a sequence
(£y,...,4x) of grid-edges (¢; € L). We assume that each grid edge is used by at most one
wire (i.e., using knock-knee layout mode where overlap of wires is not allowed [T]). Each
module M; is layout of a graph G;; boundary of each module is either rectangular or L-
shaped. Area of each module is the area (measured in terms of grid units) enclosed by its

boundary (see Figure 2).

I[f two modules correspond to the layout of the same graph then we say they can be

converted to each other. If two modules with the same area (in an asymptotic sense) can

My M3
M3

Mo

Il
wf 1 IR

Figure 1: An RGA consisting of 15 modules

— 4 —
R
T
B
T
P P

t
|

Figure 2: An L-shaped module with area 32

be converted to each other then they are called equivalent. Consider a module M occupying
(grid) columns 1 thru £. If we remove all (horizontal) wires between column ¢ and column
1+ 1 we obtain two modules: one with ¢ columns and the other with £—: columns. We say M
has been partitioned along = = i. Hereafter, we write M = (w, {) representing a rectangular
module M with width w and length ¢; by convention w < £. The next lemma shows a way

o reconfigure rectangular modules without excessive wastage.

Lemma 1 There ezists a module M' = (W', ') equivalent to a given module M = (w, {), for

w W < Vwt.

Proof: This result has been established in [L] for ' = vwl. Here, we prove the result

for w € W’ < Vwl. Assume M occupies columns 1 thru £. We partition M along columns

wel ke

1 ;- - My — .;

i LY

{ : {

My My | e M, wk: . : :
I l__ M3 |

I ﬂl

! My 1

module M module M’
Figure 3: Converting a module
r=4%z=2%...,andz = gk—'kl)i into k equal modules Mj, ..., My, where M; = (w, £) for

all 2. We place the southwest corner of M; at the grid point (1,w(¢ — 1) + 1) and therefore
its northeast corner at the grid point (£, wt) (see Figure 3). Next we interconnect M; and
Mi,1 <1 < k-1, as they were connected in M, that is, we add wires to realize the
removed wires. The module M’ = (', #') is the rectangle enclosing all submodules and wires

with w' = wk and ¢’ = { + 2w (see Figure 3).

The area of M' is o’ = w'f' = wk($ + 2w) = o + 2wk, where o is the area of M.
Next, we establish a bound on the extra area used by this layout. By hypothesis we know
W' = wk < Vwl = \/a or wk < \/a . Since we have assumed w < £ (we have), w < Va.
By combining these two we get w?k < a, or equivalently, o’ < o + 2a. Since M’ and M

correspond to the same graph and o' = ©(a) then M’ and M are equivalent. 0

Using the previous lemma we can change the aspect ratio (width/length) of a rectangular

module. Our placement technique consists of two phases. In the first phase we convert all

o
fg)
[o¥
o
.
A__l 7
[XXIXE]
o

MM
LT e
f Nas Ny ——
module M module M’ M, M,
Case 1 Case 2

_ Figure 4: Converting an L-shaped module to a rectangular module

the modules into rectangles and in the second phase we reconfigure them appropriately.

Phase 1. LConversion to Rectangkg]

In this phase, all L-shaped modules are converted into rectangles. Let a,b,c,d,e, and f
denote the six sides of an L-shaped module M in Figure 4, starting from the left side in a

clockwise ordering. The area of M is denoted by a.
Case 1) length of side e = O(+/a) and length of side b = (/)

Since the area of M is O(a) (more precisely, a) then |c| = O(v/@) and |[d| = O(y/a), where
|z| is length of side z. Let M’ be the smallest rectangle enclosing M, and let o' denote its

area (see Figure 4). Note o’ = a + |¢||d| = o + O(a). Therefore, o' = O(a).
Case 2) length of side e = o(\/a)

We partition M (by cutting the nets N,,...N,, where s < |e]) into two rectangles M,
and M;, where M; = (a,b) and M, = (e,d). We denote areas of M) and M, by a;(= ab)

and a;(= ed), respectively. (see Figure 4)

We convert both M; and M, into squares M| and M, of sides a; and a,, respectively (see

Lemma 1). Without loss of generality, assume a;, > a;. Note that a? = O(a). We place M;

|

M, M,

Figure 5: Interconnecting two sub-modules

in a square M} of side a,. We place M| and M)/, with total area ©(a), next to each other.

Nets V,,..., N, are realized using s horizontal line and s vertical line. Thus each dimension

is enlarged by s = o(y/a). (see Figure 5)
Case 3) length of side b = o(/@)
Analysis is symmetric to Case 2.

Thus we can write the following lemma.

Lemma 2 An L-shaped module can be converted into an equivalent rectangular module.

Phase 2.

In this phase, first we convert all rectangles (output of Phase 1) into squares, as described
in Lemma 1. We call the side of the smallest square one unit. Next we place each square in a
square of side 2* units, for some integer ;. Note that the length of the side of the latter square
is at most twice the length of the side of the former one, and thus, its area is at most four times
the area of the former one. We obtain a set of square modules p* = {M;,..., M2}, where
a? denote the area of M. By virtue of Lemma 1 and Lemma 2 we know A}, = O(Amin),

where A, = 3. af.

We first place every four modules of side length 2* in a module of side length 2'*!. This

P ,
o Bro-.. Bi.
) s
".14.1 "'.‘2+1
Figure 6: Recursive gate-array of fy,..., Bi+1

process is continued till there are no more than three modules of each size. This gives a set
of blocks By,..., Bx each of which is a recursive gate-array. Note that the sum of areas of
all the blocks B; is Aj,;,. Next, we sort all the blocks with respect to their area and obtain
an ordering {(B,,% s Br2, B,,g), cevs (B, B, B,,g)}, where groups of three blocks are all of the
same size. Note that some of B,rgs may not exist. Let b; be the side of B,r.,s and b; < by for
1 < 7'. Let B; denote the group of equal-sized blocks (B,,'; » Brz, B,,';). Inductively assume that
b1, ..., B; have been placed in a recursive gate array of side 2b;. We can place 4, ..., B
in a recursive gate-array of side 2b;4, as follows. Take a square of side 2b;,; and partition it
into four squares of side b;,,. Place B".‘...;’ B,,_,z“, and B,,;'_!“ in three of the squares and place
the recursive gate-array corresponding to 5, ..., 3, with side 2b;, in the fourth square. This

is always possible since 2b; < b;,, (see Figure 6).

By induction, we conclude that f,,..., 3, can be placed in a recursive gate-array of side
2b,. Since sum of the areas of B;s is AL, (or ©(Ami)), and is greater than b? (for there is
at least one module with side b;) then (2b,)> = ©(Amin). Note that each (conversion) step

takes O(1) time per module and sorting requires a total of O(nlogn) time. We conclude:

Theorem -1 A recursive gate-array layout of n modules, with minimum achievable area,

can be obtained in O(nlogn) time.

The proposed placement technique has been implemented. An example is given in Figure 7.

-l GE e

14

B [8

10

input data

Bl
B

Figure 7: Demonstrating the proposed algorithm

as B e

S G OB o0 B B e

References

[CFKNS] K. Chen, M. Feuer, K. Khokhani, K. Nan, and S. Schmidt, “The Chip Layout
Problem: An Automatic Wiring Procedure,” Proceedings of the 14th Design Au-

tomation Conference, June 1977, pp. 298-302.

(L] C. E. Leiserson, “Area-efficient Layouts for VLSI,” Proceedings of the 21st Annual

Symposium on Foundations of Computer Science, 1982.

[LP] W. Lipski and F. Preparata, “An Elementary Theory of Wirability,” Mathematical
Systems Theory, Vol. 19, No. 3, 1987. pp. 189-204

(T] C. D. Thompson, “A Complexity Theory for VLSI,” Ph.D. Thesis, Department

of Computer Science, Carnegie-Mellon University, 1980.

